Metal Forging Process

Metal Forging Process

Metal Forging Process Products Precision Forgings Supplier Product Description and Process Metal Forging Process Products Precision Forgings Supplier Production process: metal hot forging process (drop forging process) Machining process: CNC machine, machining center, lathe, mill machine, drill...

Send Inquiry Chat Now

Metal Forging Process Products Precision Forgings Supplier

Product Description and Process

Metal Forging Process Products Precision Forgings Supplier

Production process: metal hot forging process (drop forging process)

Machining process: CNC machine, machining center, lathe, mill machine, drill machine, etc.

Surface treatment process: paint coating, electrophoretic coating, electrogalvanizing coating, phosphating, black oxide coating, powder coating, etc.


Product Material and Uses

Normally produce with low carbon steel, medium carbon steel, low alloy steel, such as 1018 steel, 1020 steel, 1035 steel, 1045 steel, 16Mn, 35Mn, 40Mn2, Q235, Q345, A105, 20MnMo, 35Crmo, 42CrMo, 4140 steel, 4340 steel, 8620 steel, etc.

The steel forging products are widely used for auto-car parts, truck parts, train parts, vehicle components, construction machinery components, other machinery components, etc.


Drop forging

Drop forging is a forging process where a hammer is raised and then "dropped" onto the workpiece to deform it according to the shape of the die. There are two types of drop forging: open-die drop forging and closed-die drop forging. As the names imply, the difference is in the shape of the die, with the former not fully enclosing the work piece, while the latter does.


Open-die drop forging

Open-die forging is also known as smith forging. In open-die forging, a hammer strikes and deforms the work piece, which is placed on a stationary anvil. Open-die forging gets its name from the fact that the dies (the surfaces that are in contact with the work piece) do not enclose the work piece, allowing it to flow except where contacted by the dies. The operator therefore needs to orient and position the workpiece to get the desired shape. The dies are usually flat in shape, but some have a specially shaped surface for specialized operations. For example, a die may have a round, concave, or convex surface or be a tool to form holes or be a cut-off tool.

Open-die forgings can be worked into shapes which include discs, hubs, and blocks, shafts (including step shafts or with flanges), sleeves, cylinders, flats, hexes, rounds, plate, and some custom shapes. Open-die forging lends itself to short runs and is appropriate for art smithing and custom work. In some cases, open-die forging may be employed to rough-shape ingots to prepare them for subsequent operations. Open-die forging may also orient the grain to increase strength in the required direction.


Impression-die forging

Impression-die forging is also called "closed-die forging". In impression-die forging, the metal is placed in a die resembling a mold, which is attached to an anvil.

Usually, the hammer die is shaped as well. The hammer is then dropped on the workpiece, causing the metal to flow and fill the die cavities. The hammer is generally in contact with the workpiece on the scale of milliseconds. Depending on the size and complexity of the part, the hammer may be dropped multiple times in quick succession.

Excess metal is squeezed out of the die cavities, forming what is referred to as "flash". The flash cools more rapidly than the rest of the material; this cool metal is stronger than the metal in the die, so it helps prevent more flash from forming. This also forces the metal to completely fill the die cavity. After forging, the flash is removed.

In commercial impression-die forging, the workpiece is usually moved through a series of cavities in a die to get from an ingot to the final form. The first impression is used to distribute the metal into the rough shape in accordance to the needs of later cavities; this impression is called an "edging", "fullering", or "bending" impression.

The following cavities are called "blocking" cavities, in which the piece is working into a shape that more closely resembles the final product. These stages usually impart the workpiece with generous bends and large fillets. The final shape is forged in a "final" or "finisher" impression cavity. If there is only a short run of parts to be done, then it may be more economical for the die to lack a final impression cavity and instead machine the final features.

Impression-die forging has been improved in recent years through increased automation which includes induction heating, mechanical feeding, positioning and manipulation, and the direct heat treatment of parts after forging. One variation of impression-die forging is called "flashless forging", or "true closed-die forging". In this type of forging, the die cavities are completely closed, which keeps the workpiece from forming flash. The major advantage to this process is that less metal is lost to flash. Flash can account for 20 to 45% of the starting material. The disadvantages of this process include additional cost due to a more complex die design and the need for better lubrication and workpiece placement.

There are other variations of part formation that integrate impression-die forging. One method incorporates casting a forging preform from liquid metal. The casting is removed after it has solidified, but while still hot. It is then finished in a single cavity die. The flash is trimmed, then the part is quench hardened. Another variation follows the same process as outlined above, except the preform is produced by the spraying deposition of metal droplets into shaped collectors (similar to the Osprey process).

Closed-die forging has a high initial cost due to the creation of dies and required design work to make working die cavities. However, it has low recurring costs for each part, thus forgings become more economical with more volume. This is one of the major reasons closed-die forgings are often used in the automotive and tool industries. Another reason forgings are common in these industrial sectors is that forgings generally have about a 20 percent higher strength-to-weight ratio compared to cast or machined parts of the same material.


Hot Tags: metal forging process, manufacturers, suppliers, factory, company, foundry
Related Products

Copyright © Zhengzhou EverBright Machinery Co.,Ltd All Rights Reserved.